The $0 GTM Stack: Building Enterprise-Grade Revenue Intelligence Without Enterprise Budgets
"You don't need a $50k/year tech stack to build serious revenue intelligence."
This guide demonstrates how founders can replicate enterprise capabilities through intelligent tool composition rather than vendor lock-in.
💡 Try the Tools: ROI Calculator • Case Study Generator • View All Tools
Three-Layer Architecture
Layer 1: Signal Ingestion
- Google Sheets for manual entry
- n8n webhooks for automation
- RSS feed monitoring
- LinkedIn Sales Navigator exports
Layer 2: Enrichment & Scoring
- Hunter.io (25 lookups/month free)
- Clearbit API
- GitHub API (tech stack detection)
- Apollo.io (50 credits/month)
Layer 3: Output Generation
- Ollama + Llama 3 (local LLM)
- OpenAI ($5 free tier credit)
- Claude free tier
Code Components
URL Ingestion Logic
def fetch_text_from_url(url: str) -> str:
"""Ingest article content from URLs for signal extraction."""
response = requests.get(url, timeout=10)
soup = BeautifulSoup(response.text, 'html.parser')
article = soup.find('article')
if article:
return article.get_text(separator='\n', strip=True)
return soup.body.get_text(separator='\n', strip=True)
Lead Scoring Engine
def score_lead(company_data: dict) -> float:
"""Score leads based on signal strength (0.0-1.0)."""
score = 0.0
if company_data.get('employee_count', 0) > 50:
score += 0.2
if company_data.get('funding_stage') in ['Series A', 'Series B']:
score += 0.3
if company_data.get('recent_job_posts', 0) > 5:
score += 0.2
if company_data.get('tech_stack_match', False):
score += 0.3
return min(score, 1.0)
Brief Generator
def generate_executive_brief(company: dict, signals: list) -> str:
"""Generate McKinsey-style executive briefs from signals."""
prompt = f"""Generate executive brief for {company['name']}.
Format: 1. Summary (2 sent) 2. Opportunities (3 bullets)
3. Action (1 sent) 4. Risk (1 sent)"""
return call_llm(prompt)
Cost Comparison
| Capability | Enterprise Stack | $0 Stack |
|---|---|---|
| CRM | $150/user/mo | Google Sheets |
| Enrichment | $500/mo | Hunter + Clearbit free tier |
| Automation | $200/user/mo | n8n self-hosted |
| AI Generation | $100/mo | Ollama |
| Total | $950+/mo | $0 |
n8n Workflow Sequence
- Trigger: Google Sheet row or webhook
- Enrich: Call Hunter/Clearbit APIs
- Score: Execute Python scoring function
- Branch: Conditional logic (score > 0.8)
- Generate: Local LLM brief creation
- Output: CRM update + Slack notification
Quick Start
git clone https://github.com/BasinLeon/basin-signal-engine
cd basin-signal-engine
pip install -r requirements.txt
python scripts/run_pipeline.py --input master_resume.md
# Outputs: brief.json + audio.mp3
Results
Using this architecture, I achieved 160% pipeline growth at a Series A company. The emphasis: unified signal ingestion, deterministic scoring, and LLM-powered output generation.
← Back to Blog